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ABSTRACT

Data assimilation (DA) methods require an estimate of observation error covariance R as an external pa-

rameter that typically is tuned in a subjective manner. To facilitate objective and systematic tuning of R within

the context of ensemble Kalman filtering, this paper introduces a method for estimating how forecast errors

would be changedby increasing or decreasing each element ofR, without a need for the adjoint of themodel and

the DA system, by combining the adjoint-based R-sensitivity diagnostics presented by Daescu previously with

the technique employed by Kalnay et al. to derive ensemble forecast sensitivity to observations (EFSO). The

proposed method, termed EFSR, is shown to be able to detect and adaptively correct misspecifiedR through a

series of toy-model experiments using the Lorenz ’96 model. It is then applied to a quasi-operational global DA

system of the National Centers for Environmental Prediction to provide guidance on how to tune the R. A

sensitivity experiment in which the prescribed observation error variances for four selected observation types

were scaled by 0.9 or 1.1 following the EFSR guidance, however, resulted in forecast improvement that is not

statistically significant. This can be explained by the smallness of the perturbation given to the R. An iterative

online approach to improve on this limitation is proposed. Nevertheless, the sensitivity experiment did show

that the EFSO impacts from each observation type were increased by the EFSR-guided tuning of R.

1. Introduction

Data assimilation (DA) methods produce the best

estimate of the current state of a dynamical system by

combining the background and observations with an

‘‘optimal’’ weight. The optimal weight, denoted K, is

determined, implicitly (in variational methods) or ex-

plicitly [in ensemble Kalman filters (EnKFs)], based on

the background- and observation-error covariances,

denoted, respectively, by B and R. An accurate specifi-

cation of B and R is of vital importance, and sev-

eral methodologies [e.g., EnKFs, ensemble variational

methods (EnVar), or ensemble–variational hybrid

methods] have been developed that allow us to use an

adaptively estimated flow-dependent B. However, in

most DA methods that are in current use, R remains an

external parameter that needs to be prescribed a priori

and thus is subject to empirical tuning. In this paper we

focus on how to determine R.

Reflecting the crucial importance of correctly speci-

fying R, a considerable amount of effort has been put

forth over the decades toward accuratelymodeling it. AsCorresponding author: Daisuke Hotta, dhotta@mri-jma.go.jp
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reviewed in detail by Buehner (2010), most previously

proposed methods use the statistics of observation-

minus-background departures (O 2 B), which contain

contributions from both B and R, and separate R from

B under some additional assumptions. For example,

Hollingsworth and Lönnberg’s (1986) method, the first

of this type, assumes the diagonality of R; the so-called

Desroziers method, one of the most popular methods of

this kind (Desroziers et al. 2005), assumes optimality of

the DA system (i.e., perfectly prescribed B and R and

the perfectly computed Kalman gain K) and uses

observation-minus-analysis residuals (O 2 A) in ad-

dition to O 2 B to check the optimality of the cur-

rently prescribed covariances. These approaches have

been applied to many systems and data and have

proven to be useful, but each has its limitations be-

cause no single assumption is applicable to every sit-

uation (Buehner 2010).

Another relatively new approach, which has not been

covered by Buehner (2010), originates from the ad-

joint sensitivity studies. The ground-breaking work by

Langland and Baker (2004) introduced forecast sensi-

tivity to observations (FSO), a technique that allows us

to estimate how much each of the assimilated observa-

tions reduced or increased the forecast errors measured

with some quadratic norm, without having to perform

the expensive observing system experiments (OSEs).

Daescu (2008) generalized the FSO technique and

gave a formulation for forecast sensitivity to the back-

ground error covariance (B sensitivity) and the obser-

vation error covariance (R sensitivity). In parallel to

FSO, Daescu’s (2008) method allows us to estimate how

much the forecast would be improved or degraded by

adding small perturbations to each component ofB orR

without actually repeating DA experiments with dif-

ferent sets of B and R. Daescu’s R-sensitivity method

has been successfully applied to the global NWP systems

of several operational centers including the National

Aeronautics and Space Administration (NASA; Daescu

and Todling 2010), the Japan Meteorological Agency

(JMA; Ishibashi 2010), the Naval Research Laboratory

(NRL; Daescu and Langland 2013), and the European

Centre forMedium-RangeWeather Forecasts (ECMWF;

Cardinali and Healy 2014).

While being a powerful diagnostic tool, the applica-

bility of the adjoint sensitivity methods such as FSO and

Daescu’s methods had been somewhat limited because

these approaches require the adjoint of the forecast

model, which is difficult to develop and/or maintain. For

FSO, this limitation has been recently resolved by

adapting it to EnKF (Liu andKalnay 2008; Li et al. 2010;

Kalnay et al. 2012). The most recent formulation of the

ensemble-based FSO, or EFSO, proposed by Kalnay

et al. (2012), has been successfully implemented into a

quasi-operational global EnKF system of the National

Centers for Environmental Prediction (NCEP;Ota et al.

2013), a German convective-scale regional EnKF DA

system (Sommer and Weissmann 2014), and JMA’s

global DA system.

The objective of this paper is to show that it is possi-

ble, by combining the derivations of EFSO in Kalnay

et al. (2012) and the R sensitivity in Daescu (2008), to

formulate an ensemble version of forecast sensitivity to

observation error covariance R. We refer to these sen-

sitivity diagnostics as the ensemble forecast sensitivity to

R (EFSR). This paper is structured as follows. Section 2

derives the formulation of EFSR. Section 3 presents the

setup and the results of idealized experiments with a

simple toy system that are designed to verify the validity

of EFSR formulation. Section 4 briefly describes the

setup of realistic experiments using a lower-resolution

version of the NCEP’s global hybridDA system. Section

5 presents the results of EFSR diagnostics on this system

and an R-sensitivity experiment guided by the EFSR

results. Section 6 concludes the paper with an outlook on

future directions.

2. EFSR formulation

In this section we introduce our EFSR formulation,

building upon the derivations of Daescu (2008) and

Kalnay et al. (2012).

a. Forecast sensitivity to each element of R

1) GENERAL FORMULATION

Consider a DA problem at time t5 0. Our goal is to

derive an expression for how the scalar error ef

tj0 of the
t-hour forecast would change by small variations in the

observation error covariance matrix from R to R1R0.
We measure the forecast error with a quadratic norm:

e f

tj0 5 eTtj0Cetj0 , (1)

with

e
tj0 5 x f

tj0 2 xyt , (2)

where x f

tj0 is the forecast valid at time t initialized at time

t5 0, xyt is the verifying state at time t, and C is a square

positive-definitematrix that defines the error norm, which

is discussed later. With FSR our interest is in quantifying

the infinitesimal change to the scalar error aspect e
f

tj0
of the forecast x f

tj0 initialized with the analysis xa0 that

would result from an infinitesimally small perturbation

to R, unlike FSO, which estimates the finite-amplitude
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difference in the forecast error ef
tj0 2 ef

tj26
caused by the

assimilation of observations at time 0. Accordingly, FSR

formulation only involves analysis trajectory xf
tj0, in

contrast to FSO formulation, which involves both anal-

ysis and background trajectories: xf
tj0 and xf

tj26
.

Daescu (2008) showed that the sensitivity of e f

tj0 with
respect to the (i, j) element of R can be expressed as

›e
f

tj0
›R

i,j

52(R21dyoa)
j

 
›e

f

tj0
›yo

!
i

, (3)

with

›e
f

tj0
›yo

5 2KTMT
tj0Cetj0 , (4)

where dyoa 5 yo 2H(xa0) is theO2A residual, withH(�)
denoting the observation operator, xa0 the analysis model

state, and yo the observations, all valid at time 0;

K5BHT(HBHT 1R)21 is the gain matrix with H being

the Jacobian of H linearized around the background

model state xb0 5 xf
0j26

valid at time 0; and MT
tj0 is the

adjoint of the tangent linear forecast model from time

0 to t linearized around the analysis trajectory.

2) ADJOINT-BASED EVALUATION OF EQ. (4)
WITHIN A 4D-VAR

In an operational system, the adjoint evaluation of KT

in Eq. (4) is not straightforward since K is extremely

large (typically on the order of ;109 3 106 elements as

of 2017), so that it can never be explicitly stored on

memory. Also, given the complexity of the DA code,

writing its adjoint line by line, as was done by Zhu and

Gelaro (2008), is a demanding task. Within the context

of FSO calculations, a practical algorithm has been

proposed that multiplies a vector by KT using the ex-

isting DA code without explicitly writing its adjoint

(e.g., Trémolet 2008; Cardinali 2009), and we follow this

approach in our AFSR calculations. The essence of this

algorithm is to exploit the capacity of 4D-Var to im-

plicitly evaluate the multiplication of a vector by the

analysis error covariance matrix A: in an optimal anal-

ysis, the Kalman gain matrix can be expressed as

K5AHTR21, so that the analysis equation becomes

xa0 2 xb0edxab 5Kdyob 5A(HTR21dyob) , (5)

where dyob 5 yo 2H(xb0) is the O 2 B innovation and

A5 (B21 1HTR21H)21 is the analysis error covariance

matrix that is necessarily symmetric. Thus, the 4D-Var

algorithm, which solves the analysis equation, Eq. (5),

can be viewed as an algorithm that, given the input

vector v[HTR21dyob, multiplies it with the matrix A

and outputs Av. Then, by applying the same expression

K5AHTR21 to Eq. (4), and noting that A and R21 are

symmetric, we have

›e
f

tj0
›yo

5 2KTMT
tj0Cetj0 5 2(AHTR21)TMT

tj0Cetj0

5 (R21H)A(MT
tj02Cetj0) . (6)

In light of Eq. (6), and recalling that the Jo term in the

cost function minimized in the incremental 4D-Var al-

gorithm can be reorganized as

J
o
(dx)5

1

2
(dyob2Hdx)TR21(dyob2Hdx)

5
1

2
(Hdx)TR21(Hdx)2dxT(HTR21dyob)

1
1

2
(dyobTR21dyob)

5
1

2
(Hdx)TR21(Hdx)2dxTv1const., (7)

and that its gradient is=Jo 5HTR21Hdx2 v, the forecast

error sensitivity to observations shown in Eq. (4) can be

evaluated with the following procedure: first, compute

the vector udMT
tj02Cetj0 by integrating the adjoint

model backward from time t to 0 from the ‘‘initial’’

conditions dx5 2Cetj0; then, ingest the vector u into the

4D-Var algorithm Eq. (7) in place of v(5HTR21dyob)

in evaluating the Jo term and its gradient =Jo 5
HTR21Hdx2 v. The resultant output isAu5AMT

tj02Cetj0.
Finally, we compute the sensitivity vector ›e

f

tj0/›y
o by

applying H and multiplying it with R21. Note that in

general the analysis is not optimal, so that A is only an

approximation of the analysis error covariance.

3) ENSEMBLE-BASED IMPLEMENTATION (EFSR)

Now, we proceed to derive an ensemble equivalent of

Eqs. (3) and (4). The essential part of the derivation of

EFSO by Kalnay et al. (2012) is to exploit the fact that,

in EnKF, the Kalman gain K is approximated by

K5AHTR21 ’
1

K2 1
(XaXaT)HTR21 5

1

K2 1
XaYaTR21 ,

(8)

where K is the ensemble size, Xa 5 [x
a(1)
0 2 xa0, . . . ,

x
a(K)
0 2 xa0] is the matrix of the analysis perturbations with

x
a(i)
0 denoting the ith member analysis and xa0 5

1/K�K

i51x
a(i)
0 their ensemble mean, and Ya 5HXa is the

analysis perturbations mapped onto the observation

space. In practice, when the observation operator H

is nonlinear, Ya can be conveniently approximated

by HXa ’ [H(x
a(1)
0 )2H(xa0), . . . , H(x

a(K)
0 )2H(xa0)] with
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H(xa0)5 1/K�K

i51H(x
a(i)
0 ), in which case the last equality

in Eq. (8) becomes an approximation. Substituting Eq. (8)

into Eqs. (3) and (4) yields

›e
f

tj0
›R

i,j

52(R21dyoa)
j
(2KTMT

tj0Cetj0)i

52(R21dyoa)
j

2

K21
[R21Ya(M

tj0X
a)TCe

tj0]i

’2(R21dyoa)
j

2

K2 1
(R21YaXfT

tj0Cetj0)i , (9)

where Xf

tj0 5 [x
f (1)
tj0 2 xf

tj0, . . . , x
f (K)
tj0 2 xf

tj0] is the matrix of

forecast perturbations initialized at time 0 and valid at

time t with x
f (i)
tj0 denoting the ith member t-hour forecast

from time 0 and xf
tj0 5 1/K�K

i51x
f (i)
tj0 their ensemble mean,

and the finite-difference approximation to the tangent

linear time evolution of the perturbation, Xf

tj0 ’Mtj0X
a,

has been used in deriving the third from the second

expression. Equation (9) is the formulation of our

EFSR. Note that, unlike the adjoint-based formulation

shown in Eq. (3), Eq. (9) is straightforward to evaluate:

as with the EFSO of Kalnay et al. (2012), all the vari-

ables necessary to evaluate EFSR are readily available

from the standard product of any ensemble DA system,

except that the range of the ensemble forecast has to be

extended to t hours to obtain Xf

tj0.
In practical situations where the ensemble size is

smaller than the system’s number of degrees of freedom,

covariance localization is necessary to suppress sam-

pling errors, as with any ensemble-based methods. We

localize the (cross-)covariance 1/(K2 1)YaXfT

tj0 so that

Eq. (9) becomes

›e
f

tj0
›R

i,j

52(R21dyoa)
j

2

K2 1
fR21[r+(YaXfT

tj0)]Cetj0gi , (10)

where the symbol + represents elementwise multiplica-

tion (Schur product) and r is a localization matrix. As

discussed by Kalnay et al. (2012) and Ota et al. (2013), it

is desirable to take into account in the representation of

the localization factor r the effect of evolving error

correlation structure. In the idealized experiments pre-

sented in section 3, we avoid localization by employing a

large ensemble size. In the experiments with theNCEP’s

real system, we employ the simple localization advection

scheme of Ota et al. (2013). For a long lead time, more

sophisticated methods that account for time-evolving

error correlation, such as the ensemble correlations

raised to a power (ECO-RAP) scheme of Bishop and

Hodyss (2009a,b) and a group-filter technique of

Gasperoni and Wang (2015), would yield a better

estimation.

The computational cost required to evaluate Eq. (9)

or (10) is not very expensive. Denoting the dimension of

the system’s state vector and the number of observations

byNstate andNobs, respectively, an explicit evaluation of

Eq. (9) requires only ;Nstate 3 K operations (for mul-

tiplying the vector Cetj0 by the matrix Xf

tj0) and;Nobs 3
K operations [for multiplying the resultant (K 2 1) 3 1

vector by the matrix R21Ya]. Assuming that R21 is di-

agonal, Eq. (10) can be evaluated for each observa-

tion (indexed by i), by first computing the contribution

from the lth component of the state vector as

ril(Cetj0)l�
K

k51(Y
a)ik(X

f

tj0)lk and then taking summation

over l from 1 to Nstate, which requires ;Nstate 3 K

operations. This computation is repeated for i 5 1, . . . ,

Nobs, amounting to a total of ;Nobs 3 Nstate 3 K oper-

ations. This is more expensive than the case of Eq. (9)

without localization by a factor of Nobs, but is still less ex-

pensive compared to the EnKF assimilation. In practice,

the most expensive part of computing EFSR is generating

extended-range (t hour) ensemble forecasts to obtain Xf

tj0.
For convenience, we call the forecast sensitivity to

observation error covariance matrix FSR (short for

forecast sensitivity to R), and refer to its original adjoint

formulation by Daescu (2008) as AFSR and our en-

semble formulation as EFSR.

We emphasize that, unlike other diagnostic methods

for optimality of R (e.g., Talagrand 1999; Desroziers

et al. 2005), FSR diagnostics, neither the original adjoint

version (Daescu 2008) nor our proposed ensemble ver-

sion assume that B and R are correctly specified or that

the observations/background are unbiased.

b. Sensitivity to scaling factors

In tuning the observation error covariancematrixR, it is

customary to classify observations into some subgroups

among which observation error correlations can be ne-

glected and then to scale the error covariances within each

group by a single common factor. Daescu and Langland

(2013) derived a formulation for forecast sensitivity to

these scaling factors. Let the observations yo bepartitioned

into I subgroups fyoi , i5 1, . . . , Ig and consider scaling

each of them by the scaling factors fsoi , i5 1, . . . , Ig:

R
i
/ soi Ri

, (11)

where Ri is the subblock of R corresponding to the

subgroup yoi of the observations. The scaling factors soi
are positive nondimensional scalars. Then, the forecast

sensitivity to these scaling factors is given by

›e
f

tj0
›soi

52[R
i
P

i
(R21dyoa)]TP

i

›e
f

tj0
›yo

52(P
i
dyoa)TP

i

›e
f

tj0
›yo

,

(12)
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where we have introduced a restriction operator Pi that

projects the operand vector into its subvector corre-

sponding to the subgroup yoi of the observations.

Equation (12) indicates that, for any subgroup of ob-

servations, the sensitivity of forecast errors to the scaling

factor of observation error covariance for that subgroup

can be computed as the O 2 A residuals multiplied by

the forecast sensitivity gradient to the corresponding

observations summed up over all observations in that

subgroup (with the sign flipped).

c. Sensitivity to the covariance inflation factor

It is interesting to note that from the EFSR formula-

tion we can estimate the forecast sensitivity to the

(globally constant) multiplicative background error co-

variance inflation factor. We consider scaling the back-

ground and the observation error covariance matrices B

and R with the same scalar scaling factor s0:

R/ s0R, B/ s0B . (13)

From the expression for the Kalman gain matrix

K5BHT(HBHT 1R)21, we know thatK does not change

by this scaling. Therefore, the forecast error is also un-

changed by this scaling.

Now, we consider scaling B by sb
0
and the block sub-

matrices of fRi, i5 1, . . . , Ig by fso0i , i5 1, . . . , Ig. The
variation of the forecast error e f 0

tj0 caused by this scaling

can be written as

e
f 0
tj0 5

›e
f

tj0
›sb

sb
0
1 �

i

›e
f

tj0
›soi

so
0

i . (14)

As indicated in the previous paragraph, if the scaling

factors sb
0
and fso0i , i5 1, . . . , Ig are all identical (de-

noted s0), then the resulting change in the forecast error

must be zero. Thus,

05
›e

f

tj0
›sb

s0 1 �
i

›e
f

tj0
›soi

s0 and (15)

0
›e f

tj0
›sb

52�
i

›e f

tj0
›soi

. (16)

Daescu and Todling (2010) presented the above equa-

tion and explained it as an intrinsic consequence of

variational DA schemes. Daescu and Langland (2013)

give an alternative proof of this equation by directly

deriving the expression for ›e f

tj0/›s
b in their appendix.

Now, within the context of EnKF, noting that the scaling

factor for the background error covariance matrix can

be interpreted as a globally constant multiplicative in-

flation factor, we can interpret Eq. (16) as telling us that

the forecast sensitivity to the inflation factor can be es-

timated as the sum of the forecast sensitivity to all ob-

servation error covariance scaling factors (with the sign

flipped).

3. Toy-model experiments using the Lorenz ’96
model

a. Model and DA system

The model and DA system that we use are essen-

tially identical to those used by Kalnay et al. (2012).

As the forecast model, we use the Lorenz ’96 model

(Lorenz 1996). It is an N-dimensional ODE system

defined by

dx
j

dt
5 x

j
(x

j11
2 x

j22
)2 x

j
1F, j5 1, . . . ,N (17)

with a set of cyclic boundary conditions x21 5 xN21,

x0 5 xN , and x1 5 xN11. As in the original study by

Lorenz andEmanuel (1998), we adoptN5 40 andF5 8.0.

Kalnay et al. (2012) and Liu and Kalnay (2008) used

different values of F for the nature run and DA

cycles to simulate model errors, but here we use the

same parameter F 5 8.0 for both the nature run

and the forecast (an ‘‘identical twin’’ setting). The

forecast model Eq. (17) is integrated by the standard

fourth-order Runge–Kutta scheme with time step

Dt5 0:01.

As the DA system, we adopt the local ensemble

transform Kalman filter (LETKF; Hunt et al. 2007) with

member size K 5 40. Since the member size is equal to

the dimension of the state space, there is no need for

covariance localization in our experiments. To avoid

filter divergence, however, we applied multiplicative

covariance inflation (Anderson 2001) with a constant

inflation parameter a5 1:25 (i.e., each background

perturbation is inflated by a factor of 1.25) at each as-

similation cycle. Although this parameter is not tuned to

an optimal value, the system worked without problems.

In fact, we could use Eq. (16) to tune the inflation if

necessary; see section 3e for an example of such an at-

tempt. The cycling interval (the assimilation window) is

0.05 in nondimensional time. Lorenz and Emanuel

(1998) propose to dimensionalize the time by inter-

preting nondimensional time of 0.2 as 24 h. Hence, our

cycling interval is equivalent to 6 h in dimensional time.

In our experiments, we assimilate observations avail-

able at every grid point. For the jth grid point, the ob-

servations are generated for every analysis time by

adding independent Gaussian pseudorandom numbers

with variance so,true2

j . The true observation error co-

variance can thus be assumed to be
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Rtrue 5 diag(so,true2

1 , . . . ,so,true2

40 ). (18)

Throughout the experiments, the observation error co-

variance prescribed to the DA system R is also assumed

to be diagonal:

R5 diag(so2

1 , . . . ,so2

40). (19)

b. Experimental design

First, we produced the nature (or ‘‘truth’’) by running

the forecast model Eq. (17) from an initial condition

randomly generated from the uniform distribution in

[0, 1]. The nature run is integrated from time t5 0 to 730

(which corresponds to 10 yr in dimensional time), gen-

erating truth for 14 600 cycles.

The initial background ensemble at time t 5 0 is

generated by picking up 40 truth states at 40 randomly

chosen distinctive dates. Each DA experiment is run for

14 600 cycles (10 yr) and the first 1460 cycles (1 yr), re-

garded as a spinup period, are excluded from

verification.

To examine the ability of AFSR and EFSR to detect

the misspecification of observation error variances

so2

j , j5 1, . . . , 40, we conducted two pairs of ‘‘identical

twin’’ experiments. Each pair consists of two DA cycle

runs: one with correctly specified R (i.e., identical to the

truth; hereafter referred to as the correct-R run) and the

other with incorrectly specified R (hereafter referred to

as the incorrect-R run). The true and prescribed obser-

vation error variances for each experiment are summa-

rized in Table 1. For each of the experiments, we

compute the sensitivity vector by both the adjoint [Eqs.

(3) and (6)] and ensemble methods [Eq. (9)]. As in the

DA system, no covariance localization is performed for

EFSR estimations. As the forecast lead time, we adopt

24 h (0.2 in nondimensional time). For evaluating fore-

cast errors with Eqs. (1) and (2), we use the analysis as

the verifying state xyt and the error is measured with the

Euclidian norm. We do not show the AFSR results be-

cause they were nearly identical to the EFSR results in

all cases. The root-mean square of their normalized

differences was less than 0.2% for all experiments. We

note however that it is unclear whether the high con-

sistency between the ensemble and adjoint diagnostics,

as obtained in our idealized toy system, also holds in a

more realistic system because these two approaches rely

on different approximations. In particular, in the EFSR

formulation, the validity of the finite-difference ap-

proximation Xf

tj0 ’Mtj0X
a, and the propagation of the

localization function that is only crudely accounted for,

may become questionable especially when the evalua-

tion lead time is long; similarly, in the AFSR formula-

tion, the validity of the tangent linearity assumption for

perturbation growthmay become difficult tomaintain as

the lead time gets longer and the perturbation grows to

attain a sizable finite amplitude.

c. The SPIKE experiment

The SPIKE experiment is inspired by Liu and Kalnay

(2008) and Kalnay et al. (2012), who examined the ca-

pacity of EFSO to capture the negative impacts from the

observations at the 11th grid point that have larger ob-

servation errors than the others. In this experiment, all

observations but the one at the 11th grid point have the

error variance 0.22, while at the 11th grid point, it is 0.82.

In the incorrect-R run, they are all prescribed as 0.22.

With this experiment, we intend to see whether the

AFSR or EFSR can detect the misspecification of the

error variance at the 11th grid point to provide useful

guidance on how to correct it. We also examine whether

the FSR diagnostics do not signal ‘‘false alarms’’ when

the specification of R is correct.

We first examine the analysis errors with respect to

the truth to ensure that the system did not suffer from

any malfunction (a ‘‘filter divergence’’ in particular).

Figure 1a shows the root-mean-square errors (RMSEs)

of analysis verified against the truth averaged over the

9 yr for the correct-R and incorrect-R runs along with

the observation errors. Both runs are successful in that

the analysis is more accurate than the observations,

which ensured that a filter divergence did not occur. As

expected, the analysis becomes substantially less accu-

rate in the incorrect-R run than in the correct-R run,

especially in the vicinity of the ‘‘bad’’ observation (the

11th grid point).

We now examine the FSR diagnosed by ensemble-

and adjoint-based methods. Figure 1b shows the EFSR-

based forecast sensitivity to scaling factors of R [Eq.

(12)] for each observation. In the incorrect-R run (filled

TABLE 1. The true and prescribed observation error variances for the experiments performed using the Lorenz ’96 model.

Expt True observation error variance Prescribed observation error variance

SPIKE so,true2

j 5

�
0:82, j5 11
0:22, j 6¼ 11

so2

j 5 0:22 everywhere

STAGGERED so,true2

j 5

�
0:12, j: odd
0:32, j: even

so2

j 5 0:22 everywhere
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circles), EFSR successfully diagnoses large negative

sensitivity at the 11th grid point where the observation

error variance was intentionally made large (note that a

negative sensitivity means that the forecast error would

decrease by inflating the prescribed observation error

variance, i.e., the current prescribed observation error

variance is too small). On the other hand, for the cor-

rect-R run (open squares), the EFSR shows almost flat

zero sensitivity, which means that there are no false

alarms’’.

It is interesting to note that, in the incorrect-R run

(filled circles), despite the fact that the observation error

variances for the observations near the ‘‘bad’’ observa-

tion are correctly specified, the EFSR diagnoses positive

sensitivity, which tells us that we should decrease the

observation error variances for them.Our interpretation

for this is as follows:

The sensitivity gradient ›ef
tj0/›s

o
i , being a partial de-

rivative, tells us how, for each index i, a small displace-
ment in soi from unity would change the forecast error ef

tj0
if the prescribed error variances for other observations
are kept unchanged. Thus, if there is an observation that
makes the forecast worse, then we can make the forecast
better by giving higher credence to the adjacent, more
accurate observations.

This raises one concern: the FSRmethodsmay not give a

reliable diagnostic if accurate and inaccurate observa-

tions are located close to each other. This concern is

addressed in the next experiment.

FIG. 1. (a) Analysis errors verified against the truth for the SPIKE experiment displayed as

a function of grid number. The filled circles and open squares show the analysis errors, re-

spectively, for the incorrect-R and correct-R runs. As a reference, observation errors verified

against the truth are also shown by the triangles. (b) Ensemble-based 24-h forecast sensitivity

to theR-scaling factors for the incorrect-R (filled circles) and correct-R (open squares) runs of

the SPIKE experiment.
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d. The STAGGERED experiment

The STAGGERED experiment is designed to assess

whether the FSR diagnostics are robust to cases where

observations with different magnitudes of error are lo-

cated close to each other. The true observation error

variances are 0.12 and 0.32, respectively, for odd- and

even-numbered grid points. In the incorrect-R run, they

are all prescribed as 0.22; we should thus reduce–increase

the error variances at odd–even grid points. The design of

the STAGGERED experiment is very similar to the one

performed by Daescu and Todling (2010), who sought to

validate their AFSR diagnostics. The precise setup is not

identical, but the incorrect-R run in our STAGGERED

experiment and that in one of their experiments, which

they named DAS-1, are similar in that the same Lorenz

’96 model is used, that the accurate and less accurate

observations are placed next to each other, and that the

DA system prescribes a constant observation error vari-

ance to both the accurate and less accurate observations.

Figure 2a shows the analysis RMSE verified against

the truth for the STAGGERED experiment. Both

incorrect-R (filled circles) and correct-R (open squares)

runs are successful in the sense that the analysis is more

accurate than the observations. In the incorrect-R run,

the analyses are substantially more accurate on the odd

grids where observations are more accurate; on the other

hand, in the correct-R run, the difference in the quality of

analysis between the odd and even grids is much smaller.

The fact that correctly specifying the observation error

variances markedly improves the analysis leads us to

expect that FSR diagnostics should give us correct guid-

ance on how to tune the R.

The EFSR-based forecast sensitivity to scaling factors

of R is shown in Fig. 2b. Despite our concern that FSR

diagnostics might not work well if accurate and in-

accurate observations are located close to each other

(see the previous subsection), EFSR turned out to be

successful: in the incorrect-R run, it shows clear positive

and negative sensitivity on the odd and even grids, which

FIG. 2. As in Fig. 1, but for the STAGGERED experiment.
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indicates that we should decrease the observation error

variances on the odd grids where the prescribed obser-

vation error variances (0.22) are larger than their actual

values (0.12) and the opposite is true for the even grids.

Similar results are reported by Daescu and Todling

(2010) for their DAS-1 experiment (their Fig. 1b). On

the other hand, in the correct-R run, EFSR shows almost

identical sensitivity to the odd and even grids, suggesting

that we should inflate R with a constant factor for all

observations or, equivalently, that we should reduce the

background inflation factor [Eq. (16)]. These results

indicate that the FSR diagnostics are successful.

e. Adaptive online estimation ofR and inflation factor
guided by EFSR

EFSR diagnostics allows us to estimate the gradient of

the scalar forecast error ef

tj0 with respect to the

prescribed observation error covariance R and the

background covariance inflation factor. This gradient

information can be combined with a gradient-based it-

erative algorithm, such as the steepest-descent method,

to solve the optimization problem whose goal is to

minimize e
f

tj0 by adjusting the prescribed R and the

inflation factor. Naively performing such an optimization

would require repeating many times the analysis and

forecast for the same analysis time each time updating R

and the inflation factor, which would be computationally

unfeasible. Alternatively, we can spread the iterations

over assimilation cycles, assuming that the changes in

covariance parameters that (would have) improved

t-hour forecast from the analysis of t hours ago should

also improve the current analysis. Such an adaptive tuning

algorithm has already been proposed and proven to be

successful by Shaw andDaescu (2017) within the context

of adjoint-based sensitivity for model error bias and

covariance parameters within weak-constraint 4D-Var.

A difficulty in combining the sensitivity diagnostics and

an iterative optimization scheme is in how best to de-

termine the step size. A larger step size may achieve

faster convergence but at the risk of overcorrection that

may harm the analysis. In this sense, a smaller step size

(i.e., slowly adjusting the R and the inflation parameter)

is safer and preferable, although convergence may be

slow. Here, we explore a simple algorithm with a pre-

determined constant step size that can be schematically

summarized as follows:

soi d1:0, i5 1, . . . , K Initialize observation error scaling factors

adadefault(51:25) Initialize multiplicative covariance inflation factor

do n 5 1, . . . Loop over cycles

R :5 scale_oberr (Rdefault, soi ) Apply scaling to R by Eq. (11)

Xf

tnjtn21
5a[x

f (1)
tnjtn21

2xf
tnjtn21

, . . . , x
f (K)
tnjtn21

2 xf
tnjtn21

] Apply covariance inflation

[x
a(1)
tn , . . . , x

a(K)
tn ]dEnKF (xf

tnjtn21
, Xf

tnjtn21
, yotn , R) Analysis update

x
f (i)
tn11jtndM(x

a(i)
tn ), i5 1, . . . , K Compute the first guess for the next cycle

Compute
›e

f

tnjtn224

›soi
for i5 1, . . . , K

›e f

tnjtn224

›sb
d2�

i

›e f

tnjtn224

›soi

Compute EFSR by Eqs. (12), (8), and (4) using the

current analysis xatn as the verifying truth xytn

if

2
4�ig

 
›e f

tnjtn224

›soi

!2

. «e
f

tnjtn224

3
5 then

soi dsoi 2 g
›e

f

tnjtn224

›soi
end if

Update the scaling factors if the steepest-descent update

with step-size g is estimated to improve the scalar forecast

error at least by a factor of «
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This algorithm does not update the observation error

variance scaling factors soi and the background error

covariance inflation factor a, if the estimated relative

forecast improvement by their update is below a chosen

error level «. This condition serves as a kind of conver-

gence criterion and is found to be important to suppress

oscillatory fluctuations (successive overshoots and un-

dershoots) that degrade analysis performance.

We implemented the above adaptive algorithm and

experimented with many choices of g and «, assimilating

the observations that we used in the SPIKE experiment.

As in the incorrect-R run, we initialized the prescribed

observation error variance by so2

j 5 0:22 for all obser-

vations and the covariance inflation factor by a5 1:25.

We run the regular DA cycles using the initial R and a

for the first 240 cycles (60 days in dimensional time)

before starting the adaptive adjustment process.

The results from the experiment with g5 0:5 and

«5 0:01 are shown in Fig. 3. The estimated observation

error standard deviations so2

j at the end of 10-yr cycles

(dark triangles in Fig. 3a) successfully exhibited a

spikelike pattern that peaks at the inaccurate observa-

tions at the 11th grid. The analysis RMSEs verified

against the truth for this adaptive experiment (dark fil-

led circles in Fig. 3a) are around ;0.03 on any of the

grids, which is much smaller than ;0.1 (cf. Fig. 1a,

lighter gray open squares) seen in the correct-R run of

the SPIKE experiment with fixed R and the inflation

parameter. Time series of the estimated observation

error standard deviations at each grid point (Fig. 3b)

show that they slowly converge to the nearly steady state

shown in Fig. 3a. The covariance inflation factor a

quickly decreases from 1.25 to 1.0125 within;100 cycles

(not shown).

Different choices of the parameters g and « yielded

results that have different estimates of R and the speed

of convergence, but all the tested combinations (g5 1.0,

0.5, and 0.1; «5 0.05, 0.01, and 0.005) were successful in

that a larger observation error variance is assigned to the

11th grid than to the other grids, and in that they result in

analysis RMSEs that are smaller than in the non-

adaptive correct-R run shown in Fig. 1a by the open

squares.

4. Experiments with a real DA system: System
description and experimental setup

We implemented and tested EFSR on the NCEP’s

quasi-operational global NWP system designed to test

the new proactive quality control (Hotta et al. 2017).

The system is based on the operational suite that had

been operational until January 2015 but with the re-

duced horizontal resolutions of T254 for the de-

terministic runs and T126 for the ensemble (as opposed

to the operational T574 and T254). In this two-way in-

teractive hybrid DA system, the variational Gridpoint

Statistical Interpolation analysis system (GSI) incorpo-

rates flow-dependent background ensemble covariance

from the EnKF first-guess perturbations to produce a

deterministic analysis, and the EnKF analysis ensemble

is recentered on the deterministic analysis thus pro-

duced. The weights given to the static and ensemble

parts of the covariance in the hybrid GSI are 25% and

75%, respectively. The EnKF part of the DA system,

which, in the operational suite, is the serial ensemble

square root filter (EnSRF) of Whitaker and Hamill

(2002), is replaced with the LETKF. The ensemble size

is 80 and both localization and inflation are applied to

the covariance. We note that the localization and in-

flation parameters used in this experiment are tuned for

the operational higher-resolution system and thus may

be suboptimal for our system. Nevertheless, our system

worked well and without any problems.

We remark that in a hybridDAsystem, theKalman gain

assumed in EFSR and EFSO computation differs from

what is actually used in the hybrid analysis. Because of this

inconsistency, EFSR and EFSO may not correctly esti-

mate the sensitivities on R or observations of the forecast

initialized from the hybrid analysis; Hotta et al. (2017)

nevertheless confirmed that the EFSO-estimated total

if [any (soi , 0)] cancel the above update But undo the above update if any of the scaling factors would

become negative

if

 
›e

f

tnjtn224

›sb
3 0:1. «e f

tnjtn224

!
ada3

ffiffiffiffiffiffiffi
0:9

p

if

 
›e f

tnjtn224

›sb
3 0:1,2«e

f

tnjtn224

!
ada/

ffiffiffiffiffiffiffi
0:9

p

Update inflation factor if increasing or decreasing it by 10% is

estimated to improve the scalar forecast error at least by

a factor of «

if (a, 1:0) cancel the above update But undo the above update if it results in covariance deflation

end do
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forecast error reductions were in good agreement with

the actual forecast error reductions (see insets in their

Fig. 1), presumably because of the large weight (75%)

given to the ensemble part of the background error

covariance within the variational GSI. Validity of using

EFSR or EFSO within a hybrid DA system depends on

its specific configuration and, as such, should be as-

sessed on a system-to-system basis.

The experiment is performed with 6-hourly cycles for

the 31-day period from 8 January to 8 February 2012,

with a 7-day spinup period from 1 to 7 January 2012. All

observations that were assimilated in the operational

system during this period are also assimilated in our

experiments. Observations are grouped into different

types as in Ota et al. (2013) and Hotta et al. (2017). The

EFSO impacts and EFSR-based forecast sensitivities to

R-scaling factors [Eq. (12)] are computed for each ob-

servation type and then averaged over the 31-day pe-

riod. For both EFSO and EFSR computation, the dry

and moist total energy norms defined by Ehrendorfer

et al. (1999) are used, with forecast lead times of 6 and

24 h. The precise definition of the norm is given in Eq.

(9) ofOta et al. (2013). The same localization function as

in the LETKF analysis is used to compute EFSO and

EFSR but with the localization scheme that includes

horizontal advection as proposed by Ota et al. (2013).

In a hybrid DA system there are two choices for the

verifying truth [xyt in Eq. (2)]; here, the analysis from

the variational part is used, but we have confirmed that

the results are very similar when instead the LETKF

mean analysis is used as xyt .

5. Experiments with a real DA system: Results

Figure 4 shows the EFSR-based forecast sensitivities

to R-scaling factors for different observation types

measured with moist or dry norm and 6- or 24-h lead

time. In interpreting this figure, note that positive

FIG. 3. Results from an adaptive online R-estimation experiment with parameters g5 0:5

and «5 0:01. (a) True (triangles in lighter gray) and estimated (triangles in darker gray)

observation error standard deviations, and the analysis RMSEs verified against the truth

(filled circles), displayed as a function of grid number. (b) Time series of the estimated ob-

servation error standard deviations at every grid point. The thick line in darker gray that

grows with time represents the observation error standard deviation at the 11th grid.
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sensitivity of an observation typemeans that the forecast

error will increase by increasing the corresponding

prescribed observation error variance and thus we

should reduce the R. The fact that sensitivities are pos-

itive for all types except Moderate Resolution Imaging

Spectroradiometer (MODIS) winds, for any combina-

tions of the norm and lead time, suggests that the

background covariance inflation factor applied in this

experiment is insufficient (section 2c) or that the local-

ization length is shorter than optimal because in that

case the weights given to the observations that are away

from the analyzed grid are excessively down weighted,

resulting in overconfidence on the background.

We can also observe from Fig. 4 that, among all the

observation types, aircraft, radiosonde, and Advanced

Microwave Sounding Unit A (AMSU-A) exhibit higher

sensitivities than the others, and that MODIS winds

show negative sensitivity. This feature is consistently

seen in any combination of the lead times and the

error norms.

To assess the validity of the EFSR diagnostics de-

scribed above, we performed an R-sensitivity experi-

ment in which the observation error variances of

aircraft, radiosonde, and AMSU-A are reduced by a

factor of 0.9 and that of MODIS winds is increased by a

factor of 1.1. We chose these scaling factors, which are

close to 1, because EFSR gives an estimate on how

forecast errors would change by an infinitesimally small

perturbation to the R. Using this new R both in the

EnKF and the variational analysis, we reran the cycling

experiment for the entire period, including the spinup,

and used the last 31 days for verification.

If our EFSR diagnostics are valid, the use of the newR

should enable us to make better use of the observations,

FIG. 4. Forecast sensitivity to observation error scaling factors for different types of observations measured with

the (a),(b) moist or (c),(d) dry total energy norms, at (a),(c) 6- or (b),(d) 24-h lead time averaged over the 31-day

period. The units are J kg21. The observation types whose error variances are scaled in theR-sensitivity experiment

are labeled with either so2 3 0.9 or so2 3 1.1. The sensitivities for AMSU-A in (a) and (b) are, respectively, 0.143

and 0.120 J kg21, as indicated by the numbers below each bar.
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thereby improving our analyses and forecasts. In our

experiment, however, such forecast improvement by the

use of the new R was not detected (Fig. 5). There was a

short episode of 24-h forecast improvement from 18 to

19 January [cf. the black and gray thick solid lines

(lines a and b); this period incidentally includes the

‘‘dropouts’’ that Hotta et al. (2017) identified as cases 8

and 9], but the overall improvement was not statistically

significant. The 1-month average of the difference of

24-h forecast errors measured with the moist total en-

ergy norm before and after themodification ofR (i.e., the

difference between lines a and b) was only20.008 Jkg21,

which is much smaller than the standard deviation

0.092 J kg21 of the paired difference (which gives p .
0.27, the lower bound estimated by assuming that all

samples are independent). Similarly, no statistically

significant changes were detected for the 30-h forecast

errors initialized from the first guess [black and gray thin

solid lines (lines c and d)] or the forecast error reduction

by the assimilation of observations [black and gray dotted

lines (lines e and f)].

The fact that no statistically significant differences

were found between the two cycled experiments may

seem disappointing, but this was in fact an expected

outcome because the estimated 24-h forecast improve-

ment by the scaling of R, computed as �i(›e
f

24j0/s
o
i )ds

o
i ,

where i 2 faircraft, radiosonde, MODIS winds, AMSU-

Ag, is only 0.03 J kg21, while the standard deviation of

the 24-h forecast error e f

24j0 was 0.39 Jkg
21. This suggests

that step sizes dsoi that are much larger than our choices

of 60:1 should have been chosen in order for the fore-

cast improvement to stand out over the natural vari-

ability, but choosing larger dsoi has the risk of potentially

invalidating the EFSR estimation. The EFSR results

computed using the data from the cycled experiment

with renewed R (Fig. 6) differ very little from those of

the original cycle (Fig. 4b), suggesting that the renewed

R is still very far from nearing convergence. Further

effort is necessary to demonstrate the effectiveness of

the EFSR approach to improve forecasts in an opera-

tional environment, and an adaptive approach, such as

the one illustrated in section 3e for the toy system, would

be a promising option.

Consistent with the insignificant differences in the

forecast error reductions (De5 e
f

24j0—e
f

24j26
) before

and after the modification of R (lines e and f in Fig. 5),

the total EFSO impacts (i.e., sum of the EFSO impacts

of all the assimilated observations) resulted in no sta-

tistically significant difference from the modification

of R (mean and standard deviation of the paired dif-

ference being 0.0252 and 0.172 J kg21, respectively,

with effective sample size at most 124, giving the lower

bound of p value p. 0.11). Interestingly, however, the

renewal of R did change how the total observational

impact is distributed over different types of observa-

tions. Figure 7 compares the 1-month averages of the

FIG. 5. Time series of (line a, thick black solid line) the error of the 24-h forecast from analysis

e
f

24j0 computed for the control experiment with the original observation error covariance; (line

b, thick gray solid line) as in line a, but computed for the R-sensitivity experiment; (line c, thin

black solid line) as in line a, but for the 30-h forecast from the analysis at the previous cycle

e
f

24j–6; (line d, thin gray solid line) as in line b, but for e
f

24j–6; (line e, dotted black line) the forecast
error reduction owing to the assimilation of observations for the control experiment (i.e., the

difference between the lines a and c); and (line f, dotted gray line) as in line e, but for

theR-sensitivity experiment (i.e., the difference between the lines b and d). For all of the above,

the errors are measured with the moist total energy norm.
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EFSO impacts from each observation type before

(upper bars with darker shading) and after (lower bars

with lighter shading) the R scaling. The error bars

represent the 95% confidence interval computed with

Welch’s t test for paired differences.

From Fig. 7 we can observe the following features.

First, the EFSO impacts from aircraft, radiosonde, and

AMSU-A all were statistically significantly increased

by reducing theirR. Second, the EFSO impact from the

MODIS winds had no statistically significant increase

or decrease; this is understandable given that the

EFSO impact from the MODIS winds is almost neu-

tral. Third, the EFSO impact from the Infrared At-

mospheric Sounding Interferometer (IASI) is also

increased, although its observation error variance was

not changed; this third feature is not easy to interpret

but perhaps we should not trust this result too much

since its statistical significance is small compared to the

increase found for aircraft, radiosonde, and AMSU-A.

Finally, the EFSO impact from the Global Positioning

System Radio Occultation (GPS-RO) is somewhat

decreased. We remark that increases in (E)FSO im-

pacts in general do not imply improvements in the

analyses or forecasts; in fact, recent adjoint-based im-

pact studies by Hoover and Langland (2017) and Kim

et al. (2017) showed that forecast improvements tend

to accompany decreases rather than increases in FSO

impacts since the error norm of the forecast from the

background (ef

tj26
) tends to improve (i.e., decrease)

more than the error norm of the forecast from the

analysis (e f

tj0) does.

6. Conclusions

The observation error covariance matrix R is an

external parameter to a DA system that is often ac-

companied by significant uncertainty. Despite its un-

certainty, the choice of R is known to have a significant

impact on analysis and forecast accuracy and thus has

been subject to extensive manual tuning by operational

NWP centers. A method for objectively estimating R

has thus been sought after, and several such methods

have already been proposed. In this study, we adapted

adjoint-based R-sensitivity diagnostics of Daescu (2008)

to an EnKF using the approach of Kalnay et al. (2012),

who formulated an ensemble version of FSO. Our en-

semble equivalent of Daescu’s method, which we call

EFSR, can be implemented with only a minor code

modification to EFSO and can be computed along with

EFSO at a very small additional computational cost.

We tested the proposed EFSR on a toy system using the

Lorenz ’96 model and confirmed that EFSR can ef-

fectively detect misspecifications of R, and that an

adaptive online adjustment ofR and the inflation factor

guided by EFSR can significantly improve the estima-

tion of R, thereby significantly improving the quality of

analysis. We then applied EFSR to NCEP’s quasi-

operational global NWP system. The R-sensitivity

FIG. 7. Forecast sensitivity to observation impact before (top

bars) and after (bottom bars) the observation error variance scal-

ing, evaluated for different types of observations measured with

the moist total energy norm and 24-h lead time averaged over the

31-day period. The error bars on the top bars represent the confi-

dence intervals at the 95% level computed by a t test for the dif-

ferences among the paired data (see text for details). The units are

J kg21. As in Fig. 4, the observation types whose error variances are

scaled in the R-sensitivity experiment are labeled with either so2 3
0.9 or so2 3 1.1.

FIG. 6. As in Fig. 4b, but computed for the data from the

R-sensitivity experiment. The sensitivity for AMSU-A was

0.121 J kg21, as indicated by the number below the corre-

sponding bar.
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experiment guided by the EFSR diagnostics in which

the R for the selected four observation types are in-

flated or deflated by small factors (1.1 or 0.9), however,

did not result in statistically significant improvements

in the forecasts, which suggests that more effort is

necessary to demonstrate the effectiveness of the

EFSR approach in an operational environment. The

neutral impact of our EFSR-guided R tuning can be

explained by the smallness of our chosen step size. The

use of the adaptive online adjustment approach that we

outlined in section 3e is an attractive alternative that

we plan to explore.

The main focus of this paper was on verifying the

validity of the EFSR formulation. As such, our tuning

effort to improve the operational system was only pre-

liminary. In our experiment with the NCEP’s quasi-

operational system, we examined theR sensitivity at the

highest aggregation level (grouping of observations into

‘‘nonradiance’’ report types and ‘‘radiance’’ sensors). To

further tune the system, finer aggregations based, for

example, on the elements/channels/altitudes for each

type/sensor, should yield more informative diagnostics,

as have been done by Cardinali and Healy (2014) for

GPS-RO based on the altitudes and Lupu et al. (2015)

for IASI based on the channels.

One limitation of FSR diagnostics is that they only

suggest whether we should reduce or increase each

component of R and not by how much (Daescu and

Langland 2013). In this connection, Li et al. (2009a)

showed how the consistency diagnostics of Desroziers

et al. (2005) can be adapted within the context of EnKF

to estimate R and the covariance inflation factor.

Unlike FSR, their diagnostics have the advantage of

giving us specific estimates for each component of R

rather than just telling us the direction, but they have

the disadvantage of potentially resulting in incorrect

estimates if the currently prescribed R (and B) values

are far from being optimal. Since the two methods are

based on different approaches with different as-

sumptions and thus complement each other, we can

expect to establish a more robust tuning method by

combining the two. In fact, within an adjoint frame-

work, Lupu et al. (2015) successfully improved the R

for IASI by combining Daescu’s FSR with the

Desroziers method.

In this study, we focused on the forecast sensitivity to

observation error variances (i.e., diagonal elements of

R). However, as Eq. (9) shows, EFSR can be easily

evaluated for off-diagonal elements of R as well. A de-

tailed theoretical framework for applying adjoint-based

FSR has been recently worked out by Daescu and

Langland (2017), and the formalism presented there

should be readily applicable to EFSR as well. While

operational NWP systems traditionally assumed un-

correlated observation errors, several NWP centers have

operationally implemented interchannel correlations to

their R models for satellite radiances (Bormann et al.

2016; Buehner et al. 2017), following recent theoretical

advancements that clarified the benefits of explicitly ac-

counting for correlations in observation errors (e.g.,

Miyoshi et al. 2013; Weston et al. 2014). This aspect is

expected to become even more important in the ‘‘big

data’’ era as observing networks become denser and

more frequent. In this regard, our EFSR could serve as a

useful diagnostic that guides us in building observation

error correlation models.

Perhaps our EFSRwill prove to bemost useful when a

new observing system is introduced to a DA system. In

such a situation, in addition to assigning optimal R, de-

signing appropriate quality control (QC) criteria is of

prime importance. Lien et al. (2017) proposes a simple

and effective procedure to accelerate the development

of optimal QC criteria for a new observing system with

the aid of EFSO, and EFSR could complement this

approach.

Finally, we note that an adjoint-based sensitivity

methodology has been recently extended by Shaw

and Daescu (2017) to weak-constraint 4D-Var for-

mulation, allowing for the estimation of forecast

sensitivity with respect to model-error bias and co-

variance specification; Shaw and Daescu (2017) also

devised an online tuning procedure for these param-

eters based on the sensitivity guidance. In parallel

with weak-constraint 4D-Var, EnKF formulations

that explicitly account for model error biases have

been proposed (e.g., Baek et al. 2006; Li et al. 2009b),

and it will be an interesting future direction to explore

the ensemble-based estimation of forecast sensitivity

to prescribed parameters related to model errors

within the framework of such model-error-aware

variants of EnKF.
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